
Potts Compound Markovian Texture Model

Michal Haindl1 Václav Remeš1,2 Vojtěch Havlı́ček1
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Abstract

This paper describes a novel multispectral para-
metric compound Markov random field model for tex-
ture synthesis. The proposed compound Markov ran-
dom field model connects a parametric control random
field represented by a hierarchical Potts Markov ran-
dom field model with analytically solvable wide-sense
Markovian representation for single regions. The com-
pound random field synthesis combines the modified
fast Swendsen-Wang Markov Chain Monte Carlo sam-
pling of the hierarchical Potts MRF part with the fast
and analytical synthesis of single regional MRFs.

1. Introduction

Physically correct and convincing virtual models re-
quire not only detailed 3D shapes accorded with the
captured scene, but also object surfaces covered with
realistic nature-like surface material textures to enhance
realism in virtual scenes. The primary purpose of any
synthetic texture approach is to reproduce and enlarge a
given measured texture image so that ideally both nat-
ural and synthetic texture will be visually indiscernible.
BTF function is represented by thousands of measure-
ments (images) per material sample, thus its modelling
prerequisite is simultaneously also significant compres-
sion capability[4].

Compound random field models (CMRF) consist of
several sub-models each having different characteristics
along with an underlying structure model which con-
trols transitions between these sub models [8]. CMRF
models were successfully applied to image restoration
[1, 8, 10], segmentation [15], or modeling [7], however
these models always require demanding numerical so-
lutions with all their well known drawbacks. The ex-
ceptional CMRF [7] model allows analytical synthesis
at the cost of slightly compromised compression rate.

We propose a hierarchical Potts CMRFP3AR model
which combines two types of parametric Markov ran-
dom field (MRF) models. One model can be ana-
lytically solved, while the other MRF can use excep-
tionally fast iterative Swendsen-Wang Markov Chain
Monte Carlo (MCMC) sampling for its synthesis.

2. Compound Markov Model

Let us denote a multiindex r = (r1, r2), r ∈ I,
where I is a discrete 2-dimensional rectangular lattice
and r1 is the row and r2 the column index, respec-
tively. Xr ∈ {1, 2, . . . ,K} is a random variable with
natural number value (a positive integer), Yr is mul-
tispectral pixel at location r and Yr,j ∈ R is its
j-th spectral plane component. Both random fields
(X,Y ) are indexed on the same lattice I . Let us as-
sume that each multispectral observed texture Ỹ (com-
posed of d spectral planes e.g. d = 3 for colour tex-
tures) can be modelled by a compound Markov random
field model, where the principal Markov random field
(MRF) X controls switching to a regional local MRF
model Y =

⋃K
i=1

iY . Single K regional submodels
iY are defined on their corresponding lattice subsets
iI, iI ∩ jI = ∅ ∀i 6= j and they are of the same
MRF type. They differ only in their contextual support
sets iIr and corresponding parameters sets iθ. The
CMRFP3AR model has posterior probability

P (X,Y | Ỹ ) = P (Y |X, Ỹ )P (X | Ỹ ) (1)

and the corresponding optimal MAP solution is:

(X̂, Ŷ ) = arg max
X∈ΩX ,Y ∈ΩY

P (Y |X, Ỹ )P (X | Ỹ ) ,

where ΩX ,ΩY are corresponding configuration spaces
for random fields (X,Y ).

To avoid iterative MCMC MAP solution, we propose
the following two step approximation:
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Figure 1. A ceiling panel texture measurement, its synthetic control field, and the final synthetic
CMRFP3AR model texture (upper row). The corresponding lichen and rusty plate synthetic
texture results are in the subsequent rows.

(X̆) = arg max
X∈ΩX

P (X | Ỹ ) , (2)

(Y̆ ) = arg max
Y ∈ΩY

P (Y | X̆, Ỹ ) . (3)

This approximation significantly simplifies
CMRFP3AR estimation because it allows to take
advantage of simple analytical estimation of regional
MRF models in (3).

2.1. Region Switching Markov Model

The principal MRF (P (X | Ỹ )) is represented by a
flexible K−state Potts random field [12, 14].

The learning control random field X̆ is estimated
from the target texture using simple K-means clustering
of Ỹ in the RGB colour space into predefined number
of K classes, where cluster indices are X̆r ∀r ∈ I
estimates. The number of classes K can be estimated
using the Kullback-Leibler divergence and considering
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sufficient amount of data necessary to reliably estimate
all local Markovian models. The resulting thematic
control map X̆ is represented by the hierarchical two-
scale Potts model

X̆(a) =
1

Z(a)
exp

{
−β(a)

∑
s∈Ir

δ
X

(a)
r X

(a)
s

}
(4)

where Z is the appropriate normalizing constant and
δ() is the Kronecker delta function. The rough scale up-
per level Potts model (a = 1) regions are further elab-
orated with the detailed fine scale level (a = 2) Potts
model which models the corresponding sub-regions in
each upper level region. The parameter β(a) for both
level models is estimated using an iterative estimator
which starts from the upper β limit (βmax) and ad-
justs (decreases or increases) its value until the Potts
model regions have similar parameters (average in-
scribed squared region size and/or the region’s perime-
ter) with the target texture switching field. This iter-
ative estimator gives more resembling results with the
target texture than the alternative maximum pseudo-
likelihood method [9]. The corresponding Potts mod-
els are synthesized using the fast Swendsen-Wang sam-
pling method [13].

2.2. Local Markov Models

Local i-th texture region (not necessarily continu-
ous) is represented by the adaptive 3D causal autore-
gressive (3DCAR) random field model [3, 5] because
this model can be analytically estimated as well as syn-
thesised. Alternatively we could use spectrally decor-
related 2DCAR or 2D or 3D Gaussian Markov random
field (GMRF) models [2, 6]. All these models allows
analytical synthesis (see [2] for the corresponding con-
ditions) and they can be unified in the following matrix
equation form (i-th model index is further omitted to
simplify notation):

Yr = γ Zr + εr , (5)

where
Zr = [Y Tr−s : ∀s ∈ Ir]

T (6)

is the η d × 1 data vector with multiindices r, s, t,
γ = [A1, . . . , Aη] is the d × d η unknown param-
eter matrix with sub-matrices As. In the case of d
2D CAR / GMRF models stacked into the model equa-
tion (5) the parameter matrices As are diagonal other-
wise they are full matrices for general 3DCAR models
[5]. The model functional contextual neighbour index
shift set is denoted Ir and η = cardinality(Ir) .
GMRF and CAR models mutually differ in the corre-
lation structure of the driving noise εr (5) and in the

topology of the contextual neighbourhood Ir (see [2]
for details). As a consequence, all CAR model statis-
tics can be efficiently estimated analytically [3] while
the GMRF statistics estimates require either numerical
evaluation or some approximation ([2]).

Given the known 3DCAR process history Y (t−1) =
{Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter
estimation γ̂ can be accomplished using fast, numeri-
cally robust and recursive statistics [3]:

γ̂Tt−1 = V −1
zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

(∑t−1
u=1 YuY

T
u

∑t−1
u=1 YuZ

T
u∑t−1

u=1 ZuY
T
u

∑t−1
u=1 ZuZ

T
u

)
=

(
Ṽyy(t−1) Ṽ Tzy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

λt−1 = Vyy(t−1) − V Tzy(t−1)V
−1
zz(t−1)Vzy(t−1) ,

where V0 is a positive definite matrix (see [3]). Al-
though, an optimal causal (for (2D/3D)CAR models)
functional contextual neighbourhood Ir can be solved
analytically by a straightforward generalisation of the
Bayesian estimate in [3], we use faster approximation
which does not need to evaluate statistics for all pos-
sible Ir configurations. This approximation is based
on large spatial correlations. We start from the causal
part of a hierarchical non-causal neighbourhood and
neighbours locations corresponding to spatial correla-
tions larger than a specified threshold (> 0.6) are se-
lected. The i-th model synthesis is simple direct ap-
plication of (5) for both 2DCAR or 3DCAR models.
GMRF models synthesis requires one FFT transforma-
tion at best [2]. 3D CAR / GMRF models provide better
spectral modelling quality than the alternative spectrally
decorrelated 2D models for motley textures at the cost
of small increase of number of parameters to be stored.

3. Results

We have tested the presented novel CMRFP3AR

model on selected natural colour textures from our
extensive texture database (http://mosaic.utia.cas.cz,
Fig.1-lichen, rusty plate), which currently contains over
1500 colour textures, and on selected measurement
from the University of Bonn [11] (Fig.1-ceiling). Ex-
amples on Figs.1 use six level control field (K = 6)
and causal neighbourhood derived from the 4th order
hierarchical contextual neighbourhood.

Other tested textures were either natural materials,
such as lichen, clouds, bark, or stone , or selected man-
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made surfaces (ceiling panel, rusty plate). These result-
ing synthetic complex textures have generally better vi-
sual quality (there is no any reliable analytical quality
measure) than textures synthesised using our previously
published [2, 6, 5, 4] simpler MRF models. Synthetic
multispectral textures are mostly surprisingly good for
this fully automatic CMRFP3AR algorithm. Obviously
there is no universally optimal texture modelling algo-
rithm and also the presented method will not produce
good quality regular textures such as most textile or
knitted wool textures.

The model can be easily generalized also for com-
plex bidirectional texture function (BTF) models as it is
demonstrated on one selected ceiling panel BTF mea-
surement (zero elevation and azimuthal viewing an-
gles). The full BTF-CMRFP3AR variant of the pre-
sented model uses similar fundamental flowchart with
our Markovian BTF model [4] (i.e. BTF space intrin-
sic dimensionality estimation, BTF space segmentation,
BTF subspace MRF model estimation, subspace MRF
model synthesis and interpolation of unmeasured BTF
space parts) but allows to avoid its range map estima-
tion, range map modelling and displacement filter steps,
respectively. The presented CMRFP3AR model needs
to store only tens of parameters and thus it is capable to
reach huge compression rate relative to the alternative
sampling or hybrid based texture synthesis approaches.

4. Conclusions

The presented CMRFP3AR method shows good per-
formance on the selected class of tested real-world ma-
terials. It offers large data compression ratio (only tens
of parameters per single multispectral texture) easy sim-
ulation and exceptionally fast seamless synthesis of any
required texture size. The method can be easily gener-
alised for BTF texture modelling or for colour or BTF
texture editing by combining estimated local models
from several target textures. The method even allows to
synthesize unseen (unmeasured) textural data by chang-
ing several selected parameters.
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